Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A collection of genetically engineered Populus trees reveals wood biomass traits that predict glucose yield from enzymatic hydrolysis.

Identifieur interne : 001553 ( Main/Exploration ); précédent : 001552; suivant : 001554

A collection of genetically engineered Populus trees reveals wood biomass traits that predict glucose yield from enzymatic hydrolysis.

Auteurs : Sacha Escamez [Suède] ; Madhavi Latha Gandla [Suède] ; Marta Derba-Maceluch [Suède] ; Sven-Olof Lundqvist [Suède] ; Ewa J. Mellerowicz [Suède] ; Leif J. Jönsson [Suède] ; Hannele Tuominen [Suède]

Source :

RBID : pubmed:29150693

Descripteurs français

English descriptors

Abstract

Wood represents a promising source of sugars to produce bio-based renewables, including biofuels. However, breaking down lignocellulose requires costly pretreatments because lignocellulose is recalcitrant to enzymatic saccharification. Increasing saccharification potential would greatly contribute to make wood a competitive alternative to petroleum, but this requires improving wood properties. To identify wood biomass traits associated with saccharification, we analyzed a total of 65 traits related to wood chemistry, anatomy and structure, biomass production and saccharification in 40 genetically engineered Populus tree lines. These lines exhibited broad variation in quantitative traits, allowing for multivariate analyses and mathematical modeling. Modeling revealed that seven wood biomass traits associated in a predictive manner with saccharification of glucose after pretreatment. Four of these seven traits were also negatively associated with biomass production, suggesting a trade-off between saccharification potential and total biomass, which has previously been observed to offset the overall sugar yield from whole trees. We therefore estimated the "total-wood glucose yield" (TWG) from whole trees and found 22 biomass traits predictive of TWG after pretreatment. Both saccharification and TWG were associated with low abundant, often overlooked matrix polysaccharides such as arabinose and rhamnose which possibly represent new markers for improved Populus feedstocks.

DOI: 10.1038/s41598-017-16013-0
PubMed: 29150693
PubMed Central: PMC5693926


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A collection of genetically engineered Populus trees reveals wood biomass traits that predict glucose yield from enzymatic hydrolysis.</title>
<author>
<name sortKey="Escamez, Sacha" sort="Escamez, Sacha" uniqKey="Escamez S" first="Sacha" last="Escamez">Sacha Escamez</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Physiology, Umeå University, Umeå Plant Science Centre (UPSC), SE-901 87, Umeå, Sweden. sacha.escamez@umu.se.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Physiology, Umeå University, Umeå Plant Science Centre (UPSC), SE-901 87, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Latha Gandla, Madhavi" sort="Latha Gandla, Madhavi" uniqKey="Latha Gandla M" first="Madhavi" last="Latha Gandla">Madhavi Latha Gandla</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Chemistry, Umeå University, SE-901 87, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Derba Maceluch, Marta" sort="Derba Maceluch, Marta" uniqKey="Derba Maceluch M" first="Marta" last="Derba-Maceluch">Marta Derba-Maceluch</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre (UPSC), SE-901 83, Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre (UPSC), SE-901 83, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lundqvist, Sven Olof" sort="Lundqvist, Sven Olof" uniqKey="Lundqvist S" first="Sven-Olof" last="Lundqvist">Sven-Olof Lundqvist</name>
<affiliation wicri:level="3">
<nlm:affiliation>INNVENTIA AB, RISE Bioeconomy, Drottning Kristinas väg 61 B, SE-114 28, Stockholm, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>INNVENTIA AB, RISE Bioeconomy, Drottning Kristinas väg 61 B, SE-114 28, Stockholm</wicri:regionArea>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="2">Svealand</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mellerowicz, Ewa J" sort="Mellerowicz, Ewa J" uniqKey="Mellerowicz E" first="Ewa J" last="Mellerowicz">Ewa J. Mellerowicz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre (UPSC), SE-901 83, Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre (UPSC), SE-901 83, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jonsson, Leif J" sort="Jonsson, Leif J" uniqKey="Jonsson L" first="Leif J" last="Jönsson">Leif J. Jönsson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Chemistry, Umeå University, SE-901 87, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tuominen, Hannele" sort="Tuominen, Hannele" uniqKey="Tuominen H" first="Hannele" last="Tuominen">Hannele Tuominen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Physiology, Umeå University, Umeå Plant Science Centre (UPSC), SE-901 87, Umeå, Sweden. hannele.tuominen@umu.se.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Physiology, Umeå University, Umeå Plant Science Centre (UPSC), SE-901 87, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:29150693</idno>
<idno type="pmid">29150693</idno>
<idno type="doi">10.1038/s41598-017-16013-0</idno>
<idno type="pmc">PMC5693926</idno>
<idno type="wicri:Area/Main/Corpus">001075</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001075</idno>
<idno type="wicri:Area/Main/Curation">001075</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001075</idno>
<idno type="wicri:Area/Main/Exploration">001075</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A collection of genetically engineered Populus trees reveals wood biomass traits that predict glucose yield from enzymatic hydrolysis.</title>
<author>
<name sortKey="Escamez, Sacha" sort="Escamez, Sacha" uniqKey="Escamez S" first="Sacha" last="Escamez">Sacha Escamez</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Physiology, Umeå University, Umeå Plant Science Centre (UPSC), SE-901 87, Umeå, Sweden. sacha.escamez@umu.se.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Physiology, Umeå University, Umeå Plant Science Centre (UPSC), SE-901 87, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Latha Gandla, Madhavi" sort="Latha Gandla, Madhavi" uniqKey="Latha Gandla M" first="Madhavi" last="Latha Gandla">Madhavi Latha Gandla</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Chemistry, Umeå University, SE-901 87, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Derba Maceluch, Marta" sort="Derba Maceluch, Marta" uniqKey="Derba Maceluch M" first="Marta" last="Derba-Maceluch">Marta Derba-Maceluch</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre (UPSC), SE-901 83, Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre (UPSC), SE-901 83, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lundqvist, Sven Olof" sort="Lundqvist, Sven Olof" uniqKey="Lundqvist S" first="Sven-Olof" last="Lundqvist">Sven-Olof Lundqvist</name>
<affiliation wicri:level="3">
<nlm:affiliation>INNVENTIA AB, RISE Bioeconomy, Drottning Kristinas väg 61 B, SE-114 28, Stockholm, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>INNVENTIA AB, RISE Bioeconomy, Drottning Kristinas väg 61 B, SE-114 28, Stockholm</wicri:regionArea>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="2">Svealand</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mellerowicz, Ewa J" sort="Mellerowicz, Ewa J" uniqKey="Mellerowicz E" first="Ewa J" last="Mellerowicz">Ewa J. Mellerowicz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre (UPSC), SE-901 83, Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre (UPSC), SE-901 83, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jonsson, Leif J" sort="Jonsson, Leif J" uniqKey="Jonsson L" first="Leif J" last="Jönsson">Leif J. Jönsson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Chemistry, Umeå University, SE-901 87, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tuominen, Hannele" sort="Tuominen, Hannele" uniqKey="Tuominen H" first="Hannele" last="Tuominen">Hannele Tuominen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Physiology, Umeå University, Umeå Plant Science Centre (UPSC), SE-901 87, Umeå, Sweden. hannele.tuominen@umu.se.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Physiology, Umeå University, Umeå Plant Science Centre (UPSC), SE-901 87, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biomass (MeSH)</term>
<term>Carbohydrate Metabolism (MeSH)</term>
<term>Cellulase (metabolism)</term>
<term>Genetic Engineering (methods)</term>
<term>Glucose (metabolism)</term>
<term>Hydrolysis (MeSH)</term>
<term>Models, Biological (MeSH)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Populus (genetics)</term>
<term>Quantitative Trait, Heritable (MeSH)</term>
<term>Trees (genetics)</term>
<term>Wood (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arbres (génétique)</term>
<term>Biomasse (MeSH)</term>
<term>Bois (génétique)</term>
<term>Caractère quantitatif héréditaire (MeSH)</term>
<term>Cellulase (métabolisme)</term>
<term>Glucose (métabolisme)</term>
<term>Génie génétique (méthodes)</term>
<term>Hydrolyse (MeSH)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Métabolisme glucidique (MeSH)</term>
<term>Populus (génétique)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cellulase</term>
<term>Glucose</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
<term>Trees</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arbres</term>
<term>Bois</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Genetic Engineering</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cellulase</term>
<term>Glucose</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Génie génétique</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomass</term>
<term>Carbohydrate Metabolism</term>
<term>Hydrolysis</term>
<term>Models, Biological</term>
<term>Plants, Genetically Modified</term>
<term>Quantitative Trait, Heritable</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biomasse</term>
<term>Caractère quantitatif héréditaire</term>
<term>Hydrolyse</term>
<term>Modèles biologiques</term>
<term>Métabolisme glucidique</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Wood represents a promising source of sugars to produce bio-based renewables, including biofuels. However, breaking down lignocellulose requires costly pretreatments because lignocellulose is recalcitrant to enzymatic saccharification. Increasing saccharification potential would greatly contribute to make wood a competitive alternative to petroleum, but this requires improving wood properties. To identify wood biomass traits associated with saccharification, we analyzed a total of 65 traits related to wood chemistry, anatomy and structure, biomass production and saccharification in 40 genetically engineered Populus tree lines. These lines exhibited broad variation in quantitative traits, allowing for multivariate analyses and mathematical modeling. Modeling revealed that seven wood biomass traits associated in a predictive manner with saccharification of glucose after pretreatment. Four of these seven traits were also negatively associated with biomass production, suggesting a trade-off between saccharification potential and total biomass, which has previously been observed to offset the overall sugar yield from whole trees. We therefore estimated the "total-wood glucose yield" (TWG) from whole trees and found 22 biomass traits predictive of TWG after pretreatment. Both saccharification and TWG were associated with low abundant, often overlooked matrix polysaccharides such as arabinose and rhamnose which possibly represent new markers for improved Populus feedstocks.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29150693</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>07</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>06</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2045-2322</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2017</Year>
<Month>Nov</Month>
<Day>17</Day>
</PubDate>
</JournalIssue>
<Title>Scientific reports</Title>
<ISOAbbreviation>Sci Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>A collection of genetically engineered Populus trees reveals wood biomass traits that predict glucose yield from enzymatic hydrolysis.</ArticleTitle>
<Pagination>
<MedlinePgn>15798</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/s41598-017-16013-0</ELocationID>
<Abstract>
<AbstractText>Wood represents a promising source of sugars to produce bio-based renewables, including biofuels. However, breaking down lignocellulose requires costly pretreatments because lignocellulose is recalcitrant to enzymatic saccharification. Increasing saccharification potential would greatly contribute to make wood a competitive alternative to petroleum, but this requires improving wood properties. To identify wood biomass traits associated with saccharification, we analyzed a total of 65 traits related to wood chemistry, anatomy and structure, biomass production and saccharification in 40 genetically engineered Populus tree lines. These lines exhibited broad variation in quantitative traits, allowing for multivariate analyses and mathematical modeling. Modeling revealed that seven wood biomass traits associated in a predictive manner with saccharification of glucose after pretreatment. Four of these seven traits were also negatively associated with biomass production, suggesting a trade-off between saccharification potential and total biomass, which has previously been observed to offset the overall sugar yield from whole trees. We therefore estimated the "total-wood glucose yield" (TWG) from whole trees and found 22 biomass traits predictive of TWG after pretreatment. Both saccharification and TWG were associated with low abundant, often overlooked matrix polysaccharides such as arabinose and rhamnose which possibly represent new markers for improved Populus feedstocks.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Escamez</LastName>
<ForeName>Sacha</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">0000-0001-7049-6978</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant Physiology, Umeå University, Umeå Plant Science Centre (UPSC), SE-901 87, Umeå, Sweden. sacha.escamez@umu.se.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Latha Gandla</LastName>
<ForeName>Madhavi</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Derba-Maceluch</LastName>
<ForeName>Marta</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre (UPSC), SE-901 83, Umeå, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lundqvist</LastName>
<ForeName>Sven-Olof</ForeName>
<Initials>SO</Initials>
<AffiliationInfo>
<Affiliation>INNVENTIA AB, RISE Bioeconomy, Drottning Kristinas väg 61 B, SE-114 28, Stockholm, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mellerowicz</LastName>
<ForeName>Ewa J</ForeName>
<Initials>EJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre (UPSC), SE-901 83, Umeå, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jönsson</LastName>
<ForeName>Leif J</ForeName>
<Initials>LJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tuominen</LastName>
<ForeName>Hannele</ForeName>
<Initials>H</Initials>
<Identifier Source="ORCID">0000-0002-4949-3702</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant Physiology, Umeå University, Umeå Plant Science Centre (UPSC), SE-901 87, Umeå, Sweden. hannele.tuominen@umu.se.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>11</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Sci Rep</MedlineTA>
<NlmUniqueID>101563288</NlmUniqueID>
<ISSNLinking>2045-2322</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>EC 3.2.1.4</RegistryNumber>
<NameOfSubstance UI="D002480">Cellulase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>IY9XDZ35W2</RegistryNumber>
<NameOfSubstance UI="D005947">Glucose</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="Y">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050260" MajorTopicYN="N">Carbohydrate Metabolism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002480" MajorTopicYN="N">Cellulase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005818" MajorTopicYN="N">Genetic Engineering</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005947" MajorTopicYN="N">Glucose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006868" MajorTopicYN="N">Hydrolysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019655" MajorTopicYN="Y">Quantitative Trait, Heritable</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014934" MajorTopicYN="N">Wood</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>05</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>11</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>11</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>11</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>7</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29150693</ArticleId>
<ArticleId IdType="doi">10.1038/s41598-017-16013-0</ArticleId>
<ArticleId IdType="pii">10.1038/s41598-017-16013-0</ArticleId>
<ArticleId IdType="pmc">PMC5693926</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):845-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24379366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2015 Apr;112:210-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24997793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Feb;197(3):777-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23278123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Nov;169(3):2048-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26378099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 Jul;66(14):4109-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26060266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Jan 27;311(5760):484-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16439654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 2010 Nov-Dec;28(6):817-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20630488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2012 Oct 16;84(20):8675-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22978754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Jan;205(2):666-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25307149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14732-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11724959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2014 Jan 22;7(1):11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24450583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 Apr 4;344(6179):90-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24700858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2016 Feb;156(2):127-138</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26477543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2012 Nov 26;5(1):84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23181474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2012 Nov 22;5(1):83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23173900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2008 Jan;6(1):62-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17908207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Oct;154(2):887-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20639405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2015 Mar 12;8:41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25802552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2016 Jan;14(1):387-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25960248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2011 Apr;34(4):655-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21309794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 1999 Aug;17(8):808-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10429249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Jun;214(4):1491-1505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28257170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 May;7(5):193-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11992820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Apr 12;108(15):6300-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21444820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2015 Jan 23;16:24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25613058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2010 Nov 18;3:25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21087497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Energy Policy. 2013 Dec;63(100):114-122</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24926117</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suède</li>
</country>
<region>
<li>Svealand</li>
</region>
<settlement>
<li>Stockholm</li>
</settlement>
</list>
<tree>
<country name="Suède">
<noRegion>
<name sortKey="Escamez, Sacha" sort="Escamez, Sacha" uniqKey="Escamez S" first="Sacha" last="Escamez">Sacha Escamez</name>
</noRegion>
<name sortKey="Derba Maceluch, Marta" sort="Derba Maceluch, Marta" uniqKey="Derba Maceluch M" first="Marta" last="Derba-Maceluch">Marta Derba-Maceluch</name>
<name sortKey="Jonsson, Leif J" sort="Jonsson, Leif J" uniqKey="Jonsson L" first="Leif J" last="Jönsson">Leif J. Jönsson</name>
<name sortKey="Latha Gandla, Madhavi" sort="Latha Gandla, Madhavi" uniqKey="Latha Gandla M" first="Madhavi" last="Latha Gandla">Madhavi Latha Gandla</name>
<name sortKey="Lundqvist, Sven Olof" sort="Lundqvist, Sven Olof" uniqKey="Lundqvist S" first="Sven-Olof" last="Lundqvist">Sven-Olof Lundqvist</name>
<name sortKey="Mellerowicz, Ewa J" sort="Mellerowicz, Ewa J" uniqKey="Mellerowicz E" first="Ewa J" last="Mellerowicz">Ewa J. Mellerowicz</name>
<name sortKey="Tuominen, Hannele" sort="Tuominen, Hannele" uniqKey="Tuominen H" first="Hannele" last="Tuominen">Hannele Tuominen</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001553 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001553 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29150693
   |texte=   A collection of genetically engineered Populus trees reveals wood biomass traits that predict glucose yield from enzymatic hydrolysis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29150693" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020